请输入搜索信息:
网站首页 >> 著作论文 >> 正文

论文集总目录

[日期:2012-10-30]   来源:   作者:   阅读:


论文集总目录
( 按年排序,每年度中文在前英文在后)
 
[1] 陈兰荪: 微分方程dy/dt=x+ax2,dx/dt=y+bx+lx2+mxy+ny积分曲线的定性研究,《数学进展》,1966,9(4):
[2]  陈兰荪: 锁相环路系统的定性分析,《数学的认识与实践》,3(1973).
[3]  叶彦谦,陈兰荪: 关于微分方程组 dx/dt=-y+bx+lx2+mxy+ny2,dy/dt=x 极限环的唯一性,《数学学报》,18(1975).
[4]  陈兰荪: 关于一个平面二次系统极限环的唯一性,《数学学报》,20(1977).
[5]  陈兰荪,王明淑: 二次系统极限环的相对位置与个数,《数学学报》,22(1979).
[6] 陈兰荪. 一个二次系统不存在极限环的新证法. 数学学报,1981,(4).
[7] 陈兰荪. 关于二次系统中心积分,Dulac 函数与极限环(I). 数学学报,1982,(4).
[8] 井竹君,陈兰荪. 二次自催化反应系统的极限环. 应用数学学报,1983,(2).
[9] 陈兰荪,井竹君. 捕食者-食饵相互作用中微分方程的极限环存在性和唯一性. 科学通报,1984,(9).
[10] 王东达,陈兰荪. 二次系统极限环线的(3,1)分布. 数学学报,1985,(3).
[11] 陈兰荪 ,王东达. A Biochemical Oscillation. Acta Mathematica Scientia,1985,(3).
[12]  曹贤通,陈兰荪. 二次自催化反应系统的极限环. 应用数学学报,1985,(3).
[13]  梁肇军,陈兰荪,. 食饵种群具有常数收获率的二维VOLTERRA模型的定性分析. 生物数学学报,1986,(1).
[14]  李继彬,陈兰荪,. 周期时间制约捕食者-食饵系统的周期解分枝与浑沌现象. 生物数学学报,1986,(2).
[15] 曹贤通,陈兰荪. 推广的Volterra方程的极限环问题. 数学研究与评论,1986,(3).
[16] 戴国仁,陈兰荪. 一个多资源食物链系统的有界性和稳定性. 应用数学学报,1988,(2).
[17] 窦家维,陈兰荪,. 可逆两分子饱和反应数学模型的分析. 应用数学与计算数学学报,1990,(2).
[18] 樊引水,陈兰荪,. Periodic solutions and period-similarity of a growth model with age-structured population. Journal of Systems Science and Complexity,1991,(2).
[19] 陆忠华,陈兰荪. 周期系数的Schoner模型分析. 数学物理学报,1992,(S1).
[20] 崔景安,陈兰荪. Stablep ositive periodic solution of time dependent Lotka-Volterra periodic mutualistic system. 数学物理学报(英文版),1994,(1).
 [21] 陆忠华,陈兰荪. 食饵种群具有常数收获率的捕食──食饵模型分析. 数学杂志,1994,(4).
 [22] 陈兰荪,李华. The mathematical behavior of a Volterra predator─prey model with undercrowding effect. 微分方程年刊(英文版),1995,(1).
[23] 陆忠华,陈兰荪. 周期系数三种群Lotka-Volterra混合模型分析. 纯粹数学与应用数学,1995,(2).
[24] Chen Lansun, Lu Zhengyi, Wang Wendi. The effect of delays on the permanence for Lotka-Volterra systems[J]. Applied Mathematics Letters. 8(4): 71-73, 1995.
[25] Jingru Zhang, Lansun Chen. Periodic solutions of single-species nonautonomous diffusion models with continuous time delays[J]. Mathematical and Computer Modelling. 23(7): 17-27, 1996.
[26] Zhang Jingru, Chen Lansun. Permanence and global stability for a two-species cooperative system with time delays in a two-patch environment[J]. Computers & Mathematics with Applications. 32(12): 101-108, 1996.
[27] Yang Xia, Chen Lansun, Chen Jufang. Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models[J]. Computers & Mathematics with Applications. 32(4): 109-116, 1996.
[28] 滕志东,陈兰荪. 周期捕食被捕食系统正周期解存在的充要条件. 数学物理学报,1998,(4).
[29] Song Xinyu, Chen Lansun. Persistence and global stability for nonautonomous predator-prey system with diffusion and time delay[J]. Computers & Mathematics with Applications. 35(6): 33-40, 1998.
[30] Cui Jingan, Chen Lansun. The effect of diffusion on the time varying logistic population growth[J]. Computers & Mathematics with Applications. 36(3): 1-9, 1998.
 [31] 滕志东,陈兰荪. 非自治竞争Lotka-Volterra系统的持续生存和全局稳定. 高校应用数学学报A辑(中文版),1999,(2).
 [32] 滕志东,陈兰荪. 高维时滞周期的Kolmogorov型系统的正周期解. 应用数学学报,1999,(3).
[33] 张兴安,梁肇军,陈兰荪. 一类捕食与被捕食LV模型的扩散性质. 系统科学与数学,1999,(4).
[34] Liu P., Chen Lansun, Cui X. A discrete analogue of an integrodifferential equation[J]. Computers & Mathematics with Applications. 37(3): 41-55, 1999.
[35] Zhang Jingru, Chen Lansun, Chen Xiu Dong. Persistence and global stability for two-species nonautonomous competition Lotka-Volterra patch-system with time delay[J]. Nonlinear Analysis. 37(8): 1019-1028, 1999.
[36] Cui Jingan, Chen Lansun. The effects of habitat fragmentation and ecological invasion on population sizes[J]. Computers & Mathematics with Applications. 38(1): 1-11, 1999.
[37] Zhang Xin- An, Chen Lansun. The periodic solution of a class of epidemic models[J]. Computers & Mathematics with Applications. 38(3-4): 61-71, 1999.
[38] Teng Zhidong, Chen Lansun. Uniform persistence and existence of strictly positive solutions in nonautonomous Lotka-Volterra competitive systems with delays[J]. Computers & Mathematics with Applications. 37(7): 61-71, 1999.
[39] 滕志东,陈兰荪,具有时滞的周期Lotka-Volterra型系统的全局渐近稳定性,数学物理学报,2000(3).
[40]Lansun Chen, Zhengyi Lu, Dongming Wang. A Class of Cubic Systems with Two Centers or Two Foci. Journal of Mathematical Analysis and Applications 242, 154-163_2000.
[41] Song Xinyu, Chen Lansun. Harmless delays and global attractivity for nonautonomous predator-prey system with dispersion[J]. Computers & Mathematics with Applications. 39(5-6): 33-42, 2000.
[42] Xu Rui, Chen Lansun. Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment[J]. Computers & Mathematics with Applications. 40(4-5): 577-588, 2000.
[43] Cui Jingan, Chen Lansun, Wang Wendi. The effect of dispersal on population growth with stage-structure[J]. Computers & Mathematics with Applications. 39(1-2): 91-102, 2000.
[44]Xin-an Zhang, Lansun Chen. The Global Dynamic Behavior of the Competition Model of Three Species. Journal of Mathematical Analysis and Applications 245, 124-]141,2000.
[45] Zhang Xin-an, Chen Lansun, Neumann Avidan U. The stage-structured predator-prey model and optimal harvesting policy[J]. Mathematical Biosciences. 168(2): 201-210, 2000.
[46] 徐瑞,陈兰荪, 具有时滞和基于比率的三种群捕食系统的持久性与全局渐近稳定性,系统科学与数学,21(2)2001.
[47] 肖燕妮,唐三一,陈兰荪,一类 K-单调系统产生的 K–单调算子, 数学年刊,22A(5), 2001,
[48]Yanni XIAO, Lansun Chen. Analysis of a SIS epidemic model with stage structure and a delay. Communications in Nonlinear Science & Numerical Simulation, 6(1):35-39,2001.
[49] Xiao Yanni, Chen Lansun. Analysis of a Three Species Eco-Epidemiological Model,[J]. Journal of Mathematical Analysis and Applications. 258(2): 733-754, 2001.
[50] Song Xinyu, Chen Lansun. Conditions for Global Attractivity of n-Patches Predator-Prey Dispersion-Delay Models,[J]. Journal of Mathematical Analysis and Applications. 253(1): 1-15, 2001.
[51] Xiao Yanni, Chen Lansun. Effects of toxicants on a stage-structured population growth model[J]. Applied Mathematics and Computation. 123(1): 63-73, 2001.
[52] Song Xinvu, Chen Lansun. Global asymptotic stability of a two species competitive system with stage structure and harvesting[J]. Communications in Nonlinear Science and Numerical Simulation. 6(2): 81-87, 2001.
[53] Teng Zhidong, Chen Lansun. Global asymptotic stability of periodic Lotka-Volterra systems with delays[J]. Nonlinear Analysis. 45(8): 1081-1095, 2001.
[54] Lu Zhonghua, Liu Xianning, Chen Lansun. Hopf bifurcation of nonlinear incidence rates SIR epidemiological models with stage structure[J]. Communications in Nonlinear Science and Numerical Simulation. 6(4): 205-209, 2001.
[55] Xiao Yanni, Chen Lansun. Modeling and analysis of a predator-prey model with disease in the prey[J]. Mathematical Biosciences. 171(1): 59-82, 2001.
[56] Song Xinyu, Chen Lansun. Optimal harvesting and stability for a two-species competitive system with stage structure[J]. Mathematical Biosciences. 170(2): 173-186, 2001.
[57] Cui Jingan, Chen Lansun. Permanence and Extinction in Logistic and Lotka-Volterra Systems with Diffusion,[J]. Journal of Mathematical Analysis and Applications. 258(2): 512-535, 2001.
[58] Xu Rui, Chen Lansun. Persistence and Global Stability for a Delayed Nonautonomous Predator-Prey System without Dominating Instantaneous Negative Feedback[J]. Journal of Mathematical Analysis and Applications. 262(1): 50-61, 2001
[59] Liu Shengqiang, Chen Lansun. Profitless delays for extinction in nonautonomous Lotka-Volterra system[J]. Communications in Nonlinear Science and Numerical Simulation. 6(4): 210-216, 2001.
[60]LU Zhong -hua, Chen Lansun, Harm less Delay for Nonautonomous  Fishing Model with Stage-Structured and Diffus ion, 应用泛函分析学报,2002(1):
[61] 肖燕妮,陈兰荪,具阶段结构的竞争系统中自食的稳定性作用。数学物理学报。2002(2)
[62] 宋新宇,陈兰荪. A predator-prey system with stage structure and harvesting for predator. Annals of Differential Equations,2002(3)
[63] 刘会民,陈兰荪. 纯粹数学与应用数学, 2002,(1).非自治阶段结构捕食系统的持续生存.
[64] 陆忠华, 迟学敏,陈兰荪. Attracting behavior of inshore-offshore fishing model with stage-structure. Annals of Differential Equations, 2002(4)
[65] 徐瑞,陈兰荪. Persistence and global stability for a three-species ratio-dependent predator-prey system with time delays in two-patch environments. Acta Mathematica Scientia, 2002(4)
[66] 桂占吉,陈兰荪. 非自治Volterra-Lotka竞争方程的渐进行为. 数学物理学报, 2002(4)
[67] Xiao Yanni, Chen Lansun. A ratio-dependent predator-prey model with disease in the prey[J]. Applied Mathematics and Computation. 131(2-3): 397-414, 2002.
[68] Liu Shengqiang, Chen Lansun, Luo Guilie, et al. Asymptotic behaviors of competitive Lotka-Volterra system with stage structure[J]. Journal of Mathematical Analysis and Applications. 271(1): 124-138, 2002.
[69] Tang Sanyi, Chen Lansun. Chaos in functional response host-parasitoid ecosystem models[J]. Chaos,Solitons & Fractals. 13(4): 875-884, 2002.
[70]Sanyi Tang, Lansun Chen. Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol. 44, 185–199 (2002)
[71] Xiao Yanni, Chen Lansun, Ven Bosch Frank. Dynamical behavior for a stage-structured SIR infectious disease model[J]. Nonlinear Analysis: Real World Applications. 3(2): 175-190, 2002.
[72] Liu Shengqiang, Chen Lansun, Luo Guilie. Extinction and permanence in competitive stage structured system with time-delays[J]. Nonlinear Analysis. 51(8): 1347-1361, 2002.
[73] Liu Shengqiang, Chen Lansun, Liu Zhuojun. Extinction and permanence in nonautonomous competitive system with stage structure[J]. Journal of Mathematical Analysis and Applications. 274(2): 667-684, 2002.
[74] Xu Rui, Chaplain M. A., Chen Lansun. Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with infinite delays[J]. Applied Mathematics and Computation. 130(2-3): 295-309, 2002.
[75] Tang Sanyi, Chen Lansun. Global Qualitative Analysis for a Ratio-Dependent Predator-Prey Model with Delay,[J]. Journal of Mathematical Analysis and Applications. 266(2): 401-419, 2002.
[76] Song Xinyu, Chen Lansun. Modelling and analysis of a single-species system with stage structure and harvesting[J]. Mathematical and Computer Modelling. 36(1-2): 67-82, 2002.
[77] Liu Shengqiang, Chen Lansun. Permanence, extinction and balancing survival in nonautonomous Lotka-Volterra system with delays[J]. Applied Mathematics and Computation. 129(2-3): 481-499, 2002.
[78] Xu Rui, Chen Lansun. Persistence and global stability for n-species ratio-dependent predator-prey system with time delays[J]. Journal of Mathematical Analysis and Applications. 275(1): 27-43, 2002.
[79] Liu Shengqiang, Chen Lansun, Agarwal R. Recent progress on stage-structured population dynamics[J]. Mathematical and Computer Modelling. 36(11-13): 1319-1360, 2002
[80] Lu Zhonghua, Chi Xuebin, Chen Lansun. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J]. Mathematical and Computer Modelling. 36(9-10): 1039-1057, 2002
[81] 桂占吉, 陈兰荪. Logistic方程的持续性与周期解数学研究与评论, 2003(1)具有时滞的周期.
[82] 宋新宇,陈兰荪.一类浮游生物植化相克时滞微分方程的周期解, 数学物理学报, 2003(1)
[ 83] 徐瑞,陈兰荪. Global asymptotic stability in n-species nonautonomous lotka-volterracompetitive systems with delays .Acta Mathematica Scientia, 2003(2)
[84] 陆忠华, 陈兰荪.. Analysis of an SI epidemic model with nonlinear transmission and stage structure. Acta Mathematica Scientia,2003(4)
[85] Liu Xianning, Chen Lansun. Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J]. Chaos, Solitons & Fractals. 16(2): 311-320, 2003.
[86] Lu Zhonghua, Chi Xuebin, Chen Lansun. Impulsive control strategies in biological control of pesticide[J]. Theoretical Population Biology. 64(1): 39-47, 2003.
[87] Tang Sanyi, Chen Lansun. Multiple Attractors in Stage-structured Population Models with Birth Pulses[J]. Bulletin of Mathematical Biology. 65(3): 479-495, 2003.
[88] Liu Shengqiang, Chen Lansun. Necessary-sufficient conditions for permanence and extinction in lotka-volterra system with distributed delays[J]. Applied Mathematics Letters. 16(6): 911-917, 2003.
[89]Lu Zhonghua ,Chi Xuebin, Chen Lansun. Optimal harvesting and stability for fishing models with stage structure in inshore-offshore areas. Appl. Math. J. Chinese Univ. Ser. B, 18(2) : 151-160,2003
[90] Teng Zhidong, Chen Lansun. Permanence and extinction of periodic predator-prey systems in a patchy environment with delay[J]. Nonlinear Analysis: Real World Applications. 4(2): 335-364, 2003.
[91] 张树文, 陈兰荪. 具有脉冲效应的非自治捕食者2食饵系统周期正解, 大连理工大学学报(理学版), 2004(3)
[92] 张玉娟,  陈兰荪,  孙丽华一类具有脉冲效应的捕食者-食饵系统分析。大连理工大学学报(理学版), 2004(5)
[93] Liu Bing, Zhang Yujuan, Chen Lansun. Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control[J]. Chaos, Solitons & Fractals. 22(1): 123-134, 2004.
[94] Duan Lixia, Lu Qishao, Yang Zaizhong, et al. Effects of diffusion on a stage-structured population in a polluted environment[J]. Applied Mathematics and Computation. 154(2): 347-359, 2004.
[95] Tang Sanyi, Chen Lansun. Global attractivity in a "food-limited" population model with impulsive effects[J]. Journal of Mathematical Analysis and Applications. 292(1): 211-221, 2004.
[96] Lu Zhonghua, Chi Xuebin, Chen Lansun. Global attractivity of nonautonomous stage-structured population models with dispersal and harvest[J]. Journal of Computational and Applied Mathematics. 166(2): 411-425, 2004.
[97] Liu Xianning, Chen Lansun. Global dynamics of the periodic logistic system with periodic impulsive perturbations[J]. Journal of Mathematical Analysis and Applications. 289(1): 279-291, 2004.
[98] Sanyi Tang, Lansun Chen. The effect of seasonal harvesting on stage-structured population models. J. Math. Biol. 48, 357–374 (2004)
[99] 宋新宇,肖燕妮,陈兰荪. 具有时滞的生态-流行病模型的稳定性和Hopf分支,数学物理学报,2005(1)
[100] 惠静,陈兰荪. (英文)2005(1)脉冲效应下一个捕食食饵系统的灭绝与持续生存。应用数学,
[101] 梁志清,陈兰荪.一类基于比例确定的Leslie系统正周期解的存在性。应用数学,2005(2)
[102] 张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统,系统科学与数学2005(3)
[103] 惠静,陈兰荪.脉冲时滞微分方程的周期性和稳定性研究,数学学报 2005(6)
[104] Zhang Shuwen, Wang Fengyan, Chen Lansun. A food chain model with impulsive perturbations and Holling IV functional response[J]. Chaos, Solitons & Fractals. 26(3): 855-866, 2005.
[105] Zhang Shuwen, Chen Lansun. A Holling II functional response food chain model with impulsive perturbations[J]. Chaos, Solitons & Fractals. 24(5): 1269-1278, 2005.
[106] Zhang Yujuan, Xiu Zhilong, Chen Lansun. Chaos in a food chain chemostat with pulsed input and washout[J]. Chaos, Solitons & Fractals. 26(1): 159-166, 2005.
[107] Zhang Shuwen, Chen Lansun. Chaos in three species food chain system with impulsive perturbations[J]. Chaos, Solitons & Fractals. 24(1): 73-83, 2005.
[108] Gao Shujing, Chen Lansun, Sun Lihua. Dynamic complexities in a seasonal prevention epidemic model with birth pulses[J]. Chaos, Solitons & Fractals. 26(4): 1171-1181, 2005.
[109] Gao Shujing, Chen Lansun. Dynamic complexities in a single-species discrete population model with stage structure and birth pulses[J]. Chaos, Solitons & Fractals. 23(2): 519-527, 2005.
[110] Zhang Yujuan, Xiu Zhilong, Chen Lansun. Dynamic complexity of a two-prey one-predator system with impulsive effect[J]. Chaos, Solitons & Fractals. 26(1): 131-139, 2005.
[111] Pei Yongzhen, Chen Lansun, Zhang Qingrui, et al. Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control[J]. Journal of Theoretical Biology. 235(4): 495-503, 2005.
[112] Liu Xianning, Chen Lansun. Global behaviors of a generalized periodic impulsive Logistic system with nonlinear density dependence[J]. Communications in Nonlinear Science and Numerical Simulation. 10(3): 329-340, 2005.
[113] Tang Sanyi, Xiao Yanni, Chen Lansun, et al. Integrated pest management models and their dynamical behaviour[J]. Bulletin of Mathematical Biology. 67(1): 115-135, 2005.
[114] Gao Shujing, Chen Lansun, Sun Lihua. Optimal pulse fishing policy in stage-structured models with birth pulses[J]. Chaos, Solitons & Fractals. 25(5): 1209-1219, 2005.
[115] Xu Rui, Chen Lansun, Hao Feilong. Periodic solutions of a discrete time Lotka-Volterra type food-chain model with delays[J]. Applied Mathematics and Computation. 171(1): 91-103, 2005.
[116] Xu Rui, Chen Lansun, Hao Feilong. Periodic solutions of an n-species Lotka-Volterra type food-chain model with time delays[J]. Applied Mathematics and Computation. 171(1): 511-530, 2005.
[117] Liu Bing, Zhang Yujuan, Chen Lansun. The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management[J]. Nonlinear Analysis: Real World Applications. 6(2): 227-243, 2005.
[118] Liu Bing, Chen Lansun, Zhang Yujuan. The dynamics of a prey-dependent consumption model concerning impulsive control strategy[J]. Applied Mathematics and Computation. 169(1): 305-320, 2005.
[119] Gao Shujing, Chen Lansun. The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses[J]. Chaos, Solitons & Fractals. 24(4): 1013-1023, 2005.
[120] Zhang Shuwen, Tan Dejun, Chen Lansun. The periodic n-species Gilpin-Ayala competition system with impulsive effect[J]. Chaos, Solitons & Fractals. 26(2): 507-517, 2005.
[121] Zhang Shuwen, Dong Lingzhen, Chen Lansun. The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator[J]. Chaos, Solitons & Fractals. 23(2): 631-643, 2005.
[122] 徐瑞,郝飞龙,陈兰荪,. 一个具有时滞和阶段结构的捕食-被捕食模型. 数学物理学报,2006,(3).
[123] 高淑京,陈兰荪,. 具有三个成长阶段的单种群时滞模型的永久持续生存和全局稳定性. 数学物理学报,2006,(4).
[124] 高淑京,陈兰荪,. 具有生育脉冲的单种群阶段结构离散模型复杂性分析. 大连理工大学学报,2006,(4).
[125] 梁志清,陈兰荪. 离散Leslie捕食与被捕食系统周期解的稳定性. 数学物理学报,2006,(4).
[126] 张树文,陈兰荪,. 具有密度依赖的生育脉冲单种群阶段结构模型. 系统科学与数学,2006,(6).
[127] Jiao Jianjun, Chen Lansun. A pest management SI model with periodic biological and chemical control concern[J]. Applied Mathematics and Computation. 183(2): 1018-1026, 2006.
[128] Zhang Shuwen, Chen Lansun. A study of predator-prey models with the Beddington-DeAnglis functional response and impulsive effect[J]. Chaos, Solitons & Fractals. 27(1): 237-248, 2006.
[129] Meng Xinzhu, Chen Lansun. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays[J]. Journal of Theoretical Biology. 243(4): 562-574, 2006.
[130] Gao Shujing, Chen Lansun, Nieto Juan J., et al. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J]. Vaccine. 24(35-36): 6037-6045, 2006.
[131] Liu Bing, Teng Zhidong, Chen Lansun. Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy[J]. Journal of Computational and Applied Mathematics. 193(1): 347-362, 2006.
[132] Wang Fengyan, Zhang Shuwen, Chen Lansun, et al. Bifurcation and complexity of Monod type predator-prey system in a pulsed chemostat[J]. Chaos, Solitons & Fractals. 27(2): 447-458, 2006.
[133] Zhang Shuwen, Tan Dejun, Chen Lansun. Chaos in periodically forced Holling type II predator-prey system with impulsive perturbations[J]. Chaos, Solitons & Fractals. 28(2): 367-376, 2006.
[134] Zhang Shuwen, Tan Dejun, Chen Lansun. Chaos in periodically forced Holling type IV predator-prey system with impulsive perturbations[J]. Chaos, Solitons & Fractals. 27(4): 980-990, 2006.
[135] Zhang Shuwen, Tan Dejun, Chen Lansun. Chaotic behavior of a chemostat model with Beddington-DeAngelis functional response and periodically impulsive invasion[J]. Chaos, Solitons & Fractals. 29(2): 474-482, 2006.
[136] Hui Jing, Chen Lansun. Dynamic complexities in a periodically pulsed ratio-dependent predator-prey ecosystem modeled on a chemostat[J]. Chaos, Solitons & Fractals. 29(2): 407-416, 2006.
[137] Zhang Shuwen, Tan Dejun, Chen Lansun. Dynamic complexities of a food chain model with impulsive perturbations and Beddington-DeAngelis functional response[J]. Chaos, Solitons & Fractals. 27(3): 768-777, 2006.
[138] Zeng Guangzhao, Chen Lansun, Sun Lihua. Existence of periodic solution of order one of planar impulsive autonomous system[J]. Journal of Computational and Applied Mathematics. 186(2): 466-481,    2006.
[139]Lingzhen Dong, Lansun Chen, Lihua Sun. Extinction and permanence of the predator–prey system with stocking of prey and harvesting of predator impulsively. Mathematical methods in the applied sciences, 29:415–425, 2006;
[140] Liu Xianning, Chen Lansun. Global attractivity of positive periodic solutions for nonlinear impulsive systems[J]. Nonlinear Analysis. 65(10): 1843-1857, 2006.
[141] Liu Zhijun, Chen Lansun. Periodic solution of neutral Lotka-Volterra system with periodic delays[J]. Journal of Mathematical Analysis and Applications. 324(1): 435-451, 2006.
[142] Liu Zhijun, Chen Lansun. Positive periodic solution of a general discrete non-autonomous difference system of plankton allelopathy with delays[J]. Journal of Computational and Applied Mathematics. 197(2): 446-456, 2006.
[143] 董玲珍,陈兰荪,孙丽华. Optimal harvesting policy for inshore-offshore fishery model with impulsive diffusion. Acta Mathematica Scientia,2007,(2).
[144] 庞国萍,陶凤梅,陈兰荪,. 具有饱和传染率的脉冲免疫接种SIRS模型分析. 大连理工大学学报,2007,(3).
[145] 焦建军,陈兰荪,. Nonlinear incidence rate of a pest management SI model with biological and chemical control concern. Applied Mathematics and Mechanics(English Edition),2007,(4).
[146] 庞国萍,陈兰荪,. 具饱和传染率的脉冲免疫接种SIRS模型. 系统科学与数学,2007,(4).
[147] 谭远顺,王丽敏,陈兰荪,. 脆弱斑块中植物种子的脉冲扩散. 数学的实践与认识,2007,(13).
[148] Pang Guoping, Chen Lansun. A delayed SIRS epidemic model with pulse vaccination[J]. Chaos, Solitons & Fractals. 34(5): 1629-1635, 2007.
[149 ]Hong Zhang, Weijian Xu, Lansun Chen. A impulsive infective transmission SI model for pest control. Mathematical Methods in the Applied Sciences, 30:1169–1184, 2007.
[150] Jianjun Jiao , Xinzhu Meng ,Lansun Chen. A stage-structured Holling mass defence predator–prey model with impulsive perturbations on predators. Applied Mathematics and Computation 189,1448–1458 (2007)
[151] Wang Fengyan, Hao Chunping, Chen Lansun. Bifurcation and chaos in a Monod type food chain chemostat with pulsed input and washout[J]. Chaos, Solitons & Fractals. 31(4): 826-839, 2007.
[152] Wang Fengyan, Hao Chunping, Chen Lansun. Bifurcation and chaos in a Monod-Haldene type food chain chemostat with pulsed input and washout[J]. Chaos, Solitons & Fractals. 32(1): 181-194, 2007.
[153] Wang Fengyan, Hao Chunping, Chen Lansun. Bifurcation and chaos in a Tessiet type food chain                         chemostat with pulsed input and washout[J]. Chaos, Solitons & Fractals. 32(4): 1547-1561, 2007.
[154] Sun Shulin, Chen Lansun. Existence of positive periodic solution of an impulsive delay Logistic model[J]. Applied Mathematics and Computation. 184(2): 617-623, 2007.
[155] Meng Xin-zhu ,ChenLan-sun , Song Zhi-tao. Global dynamics behaviors for new delay SEIR epidemic disease model with vertical transmission and pulse vaccination. Applied Mathematics and Mechanics (English Edition), 28(9):1259–1271,2007,
[156] Liu Zhijun, Tan Ronghua, Chen Lansun. Global stability in a periodic delayed predator-prey system[J]. Applied Mathematics and Computation. 186(1): 389-403, 2007.
[157] Wang Limin, Liu Zhijun, Jinghui , et al. Impulsive diffusion in single species model[J]. Chaos, Solitons & Fractals. 33(4): 1213-1219, 2007.
[158] Shujing Gao, Lansun Chen, Zhidong Teng. Impulsive Vaccination of an SEIRS Model with Time Delay and Varying Total Population Size. Bulletin of Mathematical Biology (2007) 69: 731–745.
[159] Jiao Jian-jun, Chen,Lan-sun. Nonlinear incidence rate of a pest management SI model with biological and chemical control concern. Applied Mathematics and Mechanics (English Edition), 28(4):541–551, 2007.
[160] Dong Lingzhen, Chen Lansun, Sun Lihua. Optimal harvesting policies for periodic Gompertz systems[J]. Nonlinear Analysis: Real World Applications. 8(2): 572-578, 2007.
[161] Dong Lingzhen, Chen Lansun, Sun Lihua. Optimal harvesting policy for inshore-offshore fishery model with impulsive diffusion*[J]. Acta Mathematica Scientia. 27(2): 405-412, 2007.
[162] Liu Zhijun, Chen Lansun. Periodic solution of a two-species competitive system with toxicant and birth pulse[J]. Chaos, Solitons & Fractals. 32(5): 1703-1712, 2007.
[163] Dong Lingzhen, Chen Lansun, Shi Peilin. Periodic solutions for a two-species nonautonomous competition system with diffusion and impulses[J]. Chaos, Solitons & Fractals. 32(5): 1916-1926, 2007.
[164] Zhang Hong, Chen Lansun, Zhu Rongping. Permanence and extinction of a periodic predator-prey delay system with functional response and stage structure for prey[J]. Applied Mathematics and Computation. 184(2): 931-944, 2007.
[165] Zhang Hong, Jiao Jianjun, Chen Lansun. Pest management through continuous and impulsive control strategies[J]. Biosystems. 90(2): 350-361, 2007.
[166] Meng Xinzhu, Xu Weijian, Chen Lansun. Profitless delays for a nonautonomous Lotka-Volterra predator-prey almost periodic system with dispersion[J]. Applied Mathematics and Computation. 188(1): 365-378, 2007.
[167] Zhang Xin-an, Chen Lansun. The linear and nonlinear diffusion of the competitive Lotka-Volterra model[J]. Nonlinear Analysis: Theory, Methods & Applications. 66(12): 2767-2776, 2007.
[168] Meng Xinzhu, Chen Lansun, Cheng Huidong. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination[J]. Applied Mathematics and Computation. 186(1): 516-529, 2007.
[169] Jiao Jianjun, Chen Lansun, Li Limei. Asymptotic behavior of solutions of second-order nonlinear impulsive differential equations[J]. Journal of Mathematical Analysis and Applications. 337(1): 458-463, 2008.
==================================================================
[170] Mingjing Sun, Lansun Chen. Analysis of the dynamical behavior for enzyme-catalyzed reactions with impulsive input. Journal of Mathematical Chemistry
[171] Zhang Hong, Chen Lansun. Asymptotic behavior of discrete solutions to delayed neural networks with impulses[J]. Neurocomputing. In Press, Corrected Proof: 529.
[172]Shulin Sun, Lansun Chen. Complex dynamics of a chemostat with variable yield and periodically impulsive perturbation on the substrate. Journal of Mathematical Chemistry
[173] Shulin Sun, Lansun Chen. Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration. Journal of Mathematical Chemistry
[174] Liu Zhijun, Chen Lansun. On positive periodic solutions of a nonautonomous neutral delay n-species competitive system[J]. Nonlinear Analysis: Theory, Methods & Applications. In Press, Corrected Proof: 944.
[175] Gao Shujing, Chen Lansun, Teng Zhidong. Pulse vaccination of an SEIR epidemic model with time delay[J]. Nonlinear Analysis: Real World Applications. In Press, Corrected Proof: 944.
[176 ]Fengyan Wang, Guoping Pang , Lansun Chen. Study of a Monod–Haldene type food chain chemostat with pulsed substrate. Journal of Mathematical Chemistry
[177] Meng Xinzhu, Jiao Jianjun, Chen Lansun. The dynamics of an age structured predator-prey model with disturbing pulse and time delays[J]. Nonlinear Analysis: Real World Applications. In Press, Corrected Proof: 944.
[178] Zhang Hong, Chen Lansun, Nieto Juan J. A delayed epidemic model with stage-structure and pulses for pest management strategy[J]. Nonlinear Analysis: Real World Applications. In Press, Corrected Proof: 1926.
[179] Jiao Jianjun, Pang Guoping, Chen Lansun, et al. A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator[J]. Applied Mathematics and Computation. In Press, Corrected Proof: 1926.
[180] Liu Kaiyuan, Meng Xinzhu, Chen Lansun. A new stage structured predator-prey Gomportz model with time delay and impulsive perturbations on the prey[J]. Applied Mathematics and Computation. In Press, Corrected Proof: 1219.
[181] Jiao Jianjun, Chen Lansun, Luo Guilie. An appropriate pest management SI model with biological and chemical control concern[J]. Applied Mathematics and Computation. In Press, Corrected Proof: 1219.
[182] Pang Guoping, Wang Fengyan, Chen Lansun. Analysis of a Monod-Haldene type food chain chemostat with periodically varying substrate[J]. Chaos, Solitons & Fractals. In Press, Corrected Proof: 529.
[183] Pang Guoping, Wang Fengyan, Chen Lansun. Analysis of a viral disease model with saturated contact rate[J]. Chaos, Solitons & Fractals. In Press, Corrected Proof: 1926.
[184] Pang Guoping, Wang Fengyan, Chen Lansun. Extinction and permanence in delayed stage-structure predator-prey system with impulsive effects[J]. Chaos, Solitons & Fractals. In Press, Corrected Proof: 361.
[185] Jiao Jianjun, Meng Xinzhu, Chen Lansun. Global attractivity and permanence of a stage-structured pest management SI model with time delay and diseased pest impulsive transmission[J]. Chaos, Solitons & Fractals. In Press, Corrected Proof: 529.
[186] Meng Xinzhu, Jiao Jianjun, Chen Lansun. Global dynamics behaviors for a nonautonomous Lotka-Volterra almost periodic dispersal system with delays[J]. Nonlinear Analysis: Theory, Methods & Applications. In Press, Corrected Proof: 1561.
[187] Tan Yuanshun, Chen Lansun. Modelling approach for biological control of insect pest by releasing infected pest[J]. Chaos, Solitons & Fractals. In Press, Corrected Proof: 378.
[188] Liu Zhijun, Tan Ronghua, Chen Yiping, et al. On the stable periodic solutions of a delayed two-species model of facultative mutualism[J]. Applied Mathematics and Computation. In Press, Corrected Proof: 1926.
[189] Meng Xinzhu, Chen Lansun. Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay[J]. Journal of Mathematical Analysis and Applications. In Press, Corrected Proof: 1219.
[190] Wang Fengyan, Pang Guoping, Chen Lansun. Qualitative analysis and applications of a kind of state-dependent impulsive differential equations[J]. Journal of Computational and Applied Mathematics. In Press, Corrected Proof: 1926.
[191]Yongzhen Pei , Guangzhao Zeng, Lansun Chen. Species extinction and permanence in a prey–predator model with two-type functional responses and impulsive biological control. Nonlinear Dyn
[192]Hong Zhang, Lansun Chen. Toxic action and antibiotic in the chemostat: permanence and extinction of a model with functional. Journal of Mathematical Chemistry
 

上一条:《陈兰荪论文选集》编委会 下一条:生物动力学

最新添加
热门阅读