文章编号: 1009-4822( 2011) 01-0001-09
害虫治理与半连续动力系统几何理论
陈兰荪1,2
( 1. 中国科学院数学与系统科学研究院,北京 100080; 2. 福建师范大学闽南科技学院,福建 泉州 362332)
摘要: 从害虫治理的实际问题出发,建立了一类脉冲状态反馈控制害虫的防治模型. 提出了半连续动力系统几何理论,并应用这一理论证明了该模型至少存在一个阶 1 周期解. 结合具体实例,介绍了阶 1 同宿分支和脉冲环面动力系统的基本理论与分析方法.
关键词: 半连续动力系统; 脉冲微分方程; 害虫治理; 阶 1 周期解
中图分类号: O175. 14 文献标志码: A
作者简介: 陈兰荪( 1938 - ) ,男,教授,博士生导师,主要从事生物数学研究.
Pest Control and Geometric Theory ofSemi-Continuous Dynamical System
CHEN Lan-sun1,2
( 1. Academy of Mathematics and Systems Science,Chinese Academy of Science,Beijing 100080,China;
2. Minnan Science and Technology Institute,Fujian Normal University,Quanzhou 362332,China)
Abstract: Starting from practical problem of the pest control,a class of pest prevention model with impulsive feedback control is established. The geometric theory of semi-continuous dynamical systems is presented,and by applying this theory,it is proved for this model to have at least one order-one periodic solution. With the specific instance,the basic theory and analyzing method of the order-one homoclinic bifurcation and pulse torus power system are introduced.
Key words: semi-continuous dynamical systems; impulsive differential equations; pest control; order-one periodic solution
论文下载:害虫治理与半连续动力系统几何理论